Big Data Challenges
n Delivering Health Coaching
Interventions to the Home
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Technology for Health Coaching
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Evidence -Based Principles

Theory-based coaching Current practice

A Develop shared goals AV Human - phone
with patient preferences Interaction at baseline

A Assess readiness to AV Human - phone
change, motivations, Interaction at baseline
triggers, barriers, self-
efficacy

A Tailor interactions AV Human phone
(action plan, messages) Interaction at baseline

A Continuous monitoring A -- Predetermined set
with just-in-time intervals for phone calls

Intervention

&) Northeastern University



What do coaches actually do?

Motivational Interviewing
ACol |l aborative (donot
A Assess motivations to change

A Assess barriers to change
I What are the triggers?

I Develop problem solving plan for dealing with
those situations

A Develop a tailored shared action plan
A Monitor & provide feedback / encouragement
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Examples from Monitoring
Older Adults

A Examples of New Behavioral Measures (used in
remote coaching research)

I Activity Monitoring in the Home

I Cognitive Monitoring

I Motor Speed

I Sleep Monitoring

I Socialization 1 Skype, phone, emails
I Physical Exercise
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Medlcatlpn Management @ ORCATECH
Depression
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Inference of Patient Activities Based on Sensor Data
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Models to Infer Sensor Location &
Legitimate Pathways
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Pavel et al., The role of technology and engineering models in transforming healthcare,
IEEE Reviews in Biomedical Engineering, 6:156-177 (2013)
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Activity Monitoring in the Home Sensor Events
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Activity Monitoring in the Home Sensor Events

Residential
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Measuring Gait in the Home

A Unobtrusive gait measurement in-home with passive
Infrared (P|R) SENSOI'S - Hagler, et al., IEEE Trans Biomed Eng, 2010

I Four restricted view PIR sensors

I Measure gait velocity whenever a

I subjects passes through the

i Asenlsiome o

I Deployed for the Intelligent

I Systems for Assessing

I Aging Changes (ISAAC) study

| 200+ subjects monitored for > 4 years
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